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Nonlinear instability of plane liquid sheets
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A nonlinear stability analysis has been carried out for plane liquid sheets moving
in a gas medium at rest by a perturbation expansion technique with the initial
amplitude of the disturbance as the perturbation parameter. The first, second and
third order governing equations have been derived along with appropriate initial and
boundary conditions which describe the characteristics of the fundamental, and the
first and second harmonics. The results indicate that for an initially sinusoidal sinuous
surface disturbance, the thinning and subsequent breakup of the liquid sheet is due
to nonlinear effects with the generation of higher harmonics as well as feedback into
the fundamental. In particular, the first harmonic of the fundamental sinuous mode is
varicose, which causes the eventual breakup of the liquid sheet at the half-wavelength
interval of the fundamental wave. The breakup time (or length) of the liquid sheet is
calculated, and the effect of the various flow parameters is investigated. It is found
that the breakup time (or length) is reduced by an increase in the initial amplitude
of disturbance, the Weber number and the gas-to-liquid density ratio, and it becomes
asymptotically insensitive to the variations of the Weber number and the density
ratio when their values become very large. It is also found that the breakup time (or
length) is a very weak function of the wavenumber unless it is close to the cut-off
wavenumbers.

1. Introduction
Liquid sheet instability and subsequent breakup into ligaments and finally droplets

are extensively utilized in many practical applications, ranging from spray drying
operations, chemical and pharmaceutical processing, to power generation and propul-
sion systems (Lefebvre 1983; Masters 1985). A good understanding of the liquid sheet
breakup process is essential for the design, operation and performance evaluation
and improvement of the practical systems involved. As a result, numerous studies
have been carried out to investigate various aspects of liquid sheet stability and
breakup processes. A summary of the early studies related to the application of liquid
atomization and sprays can be found in Lefebvre (1989).

The linear instability of a thin liquid sheet was investigated by Squire (1953)
and Hagerty & Shea (1955), and both liquid and gas phases were taken as inviscid
and incompressible. Hagerty & Shea (1955) showed that there can only exist two
modes of unstable waves on the two gas–liquid interfaces for liquid sheets in a
stationary gas medium, corresponding to the two surface waves oscillating exactly
in and out of phase, commonly referred to as the sinuous and varicose modes,
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and that the sinuous mode is always predominant under the typical conditions for
practical applications. They also performed the first experimental measurements of
the wave growth and wavelength for liquid sheets under various flow conditions, and
the theoretical predictions were compared favourably with their experimental results.
The effect of liquid viscosity was investigated by Li & Tankin (1991). It was shown
that although aerodynamic instability dominates and the viscous effect reduces the
wave growth rate for the sinuous mode at large Weber numbers and for the varicose
mode at any Weber number, liquid viscosity can enhance the liquid sheet instability
for the sinuous mode at low Weber numbers, and under this condition the viscosity-
enhanced instability can even become predominant. Li (1994) also carried out a study
on the stability of viscous liquid sheets in two gas streams of unequal velocities. It
was found that two independent unstable modes exist for this case, named therein as
para-sinuous and para-varicose modes, and they resemble, but certainly differ from,
the well-known sinuous and varicose modes found by Hagerty & Shea (1955) for
liquid sheets in a stationary gas medium. It was also shown that the relative velocities
of the liquid and gas streams control the para-varicose mode and the para-sinuous
mode at large Weber numbers, and the absolute velocities of the liquid and gas
streams dominate the para-sinuous mode at small Weber numbers. The effect of gas
compressibility on the liquid sheet instability has also been investigated by Li & Kelly
(1992) for inviscid liquid sheets and by Cao & Li (1999) for viscous liquid sheets in
two gas streams of unequal velocities. It was shown that gas compressibility always
enhances the instability and breakup processes of liquid sheets. The absolute and
spatial instability of liquid sheets has also been investigated (Lin, Lian & Creighton
1990; Li 1993), and reviewed by Li (1996). It was found that the absolute instability
only occurs for the sinuous mode at small Weber numbers, approximately less than
one, and the spatial and temporal instability are related to each other according to
Gaster transformation (1962) for large Weber numbers of practical importance.

In all the above-cited theoretical studies, linearized stability analysis has been
employed. The linear theory does not offer a means for the liquid sheet to break up,
because during the growth of the sinuous mode of disturbances predominant under
practical conditions, the two gas–liquid interfaces remain a constant distant apart.
Hence, the liquid sheet breakup length, which is an important parameter in the spray
modelling and spray system design, cannot be predicted based on the linear theory
alone. In reality, the liquid sheet breakup processes are nonlinear, especially near the
breakup region, as observed experimentally (Mansour & Chigier 1990; Hashimoto &
Suzuki 1991). So far, only limited studies have been carried out on the nonlinearity
of the liquid sheet breakup processes. Clark & Dombrowski (1972) were the first
to analyse nonlinear liquid sheet disintegration through the perturbation expansion
technique with initial disturbance amplitude as the perturbation parameter. A solution
accurate up to the second order of the initial disturbance amplitude was obtained
for the case of wavelengths relatively long compared with the sheet thickness. It was
found that sheet thinning was caused by the growth of the harmonic wave, with
maximum thinning and subsequent rupture occurring at positions corresponding to
3/8 and 7/8 of the length of the fundamental wave. The theoretical results were
also used to calculate the breakup lengths of attenuating liquid sheets produced by
fan and swirl spray nozzles, and compared with experimental measurements. Rangel
& Sirignano (1988) used the vortex-sheet discretization method and computation
technique to investigate the nonlinear evolution of initially small disturbances at
an interface separating two fluids of different density and velocity with effects of
surface tension included. The same approach was also used in a later study (Rangel
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Figure 1. Schematic of a plane liquid sheet and sinuous disturbance.

& Sirignano 1991) for the linear and nonlinear instability of a finite-thickness fluid
sheet in contact with two semi-infinite streams of a different fluid. It was shown that
sinuous disturbances may result in the formation of ligaments interspaced at half the
wavelength of the fundamental mode.

On the other hand, the nonlinear breakup for a similar problem, namely a circular
liquid jet in the Rayleigh breakup regime, has been studied extensively, through either
perturbation expansion (Yuen 1968), one-dimensional approximation (Bogy 1978)
or numerical simulation (Ashgriz & Mashayek 1995). Experimental investigation by
Taub (1976) indicates that for the breakup of circular liquid jets, the closer to the
breakup region, the higher the order of the nonlinear perturbation analysis has to
be in order for adequate description of the breakup behaviour. Both theoretical
and experimental studies were reviewed up to 1979 by Bogy (1979), who pointed
out that the perturbation solutions are capable of describing the process of liquid
jet breakup and satellite-drop formation, and a nonlinear analysis up to the third
order of perturbation expansion in terms of the initial disturbance amplitude is
generally sufficient to account for the inherent nonlinear nature of the breakup
process. Therefore, a third-order nonlinear analysis has been carried out in this study
with the initial amplitude as the expansion parameter. The objectives are to investigate
the process of liquid sheet disruption preceding spray droplet formation, the effect of
finite amplitude of the disturbance on the development of the surface wave-forms,
and the effect of various flow parameters on the liquid sheet breakup process, and to
calculate the liquid sheet breakup length as a function of various flow parameters.

2. Mathematical formulation
A two-dimensional liquid sheet of thickness 2a is considered, as schematically

shown in figure 1. The liquid is Newtonian with a density ρl , and the liquid sheet
moves at a uniform axial velocity of Ul in a stationary surrounding gas medium of
density ρg . Both liquid and gas phases are assumed inviscid and incompressible, and
the effect of gravity is neglected here because the Froude number is typically very
large for practical liquid atomization and sprays. Although liquid viscosity, as shown
by Li & Tankin (1991), introduces an additional mode which destabilizes a range of
wavenumbers at small Weber numbers, its effect at large Weber numbers, typical of
atomization and spray application, is primarily in reducing the disturbance growth
rate and increasing the dominant wavelength. Therefore, for simplicity and with no
loss of generality, liquid viscosity is neglected in this study. Gas viscosity is neglected
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because of the observation that it is only weakly stabilizing, and does not influence
the relevant phenomenon appreciably, as Lin & Ibrahim (1990) found in a related
work. The velocity of the gas streams on both sides of the liquid sheet can have
significant and complex effects on the characteristics of the surface waves as shown
by Li (1994) in his linear analysis. Hence, the gas velocity is avoided in this first
attempt at the nonlinear effect, and will be examined in a further work on nonlinear
breakup of liquid sheets.

For the purpose of analysis, we shall assume that the liquid flow is initially
irrotational and the gas motion starts from rest so that the flow field can be treated
as potential flow because of the inviscid assumption. For such a flow situation,
the pressure field is constant within the liquid and the gas phase, and there is no
discontinuity across the two liquid–gas interfaces due to the effect of surface tension,
which is denoted by σ, because of the infinite radius of curvature of the plane surface.

When disturbances set in, the interfacial deformation of the liquid sheet results, and
the upper and lower interfaces are now located at y = a+η∗1(x, t) and y = −a+η∗2(x, t),
respectively. Correspondingly, the flow field is disturbed and deviates from the base
flow field described above. For proper presentation of the analysis and interpretation
of the results, all physical parameters are non-dimensionalized. The length, time, and
density are scaled by the half-sheet thickness a, the convection time a/Ul , and the
liquid density ρl . Then for the Cartesian coordinate system defined in figure 1, where
the x-axis lies at the centreline of the undisturbed sheet in the direction of the liquid
flow, the dimensionless velocity potential φ for the gas and liquid phases, and the
dimensionless surface disturbance ηj in the y-direction must satisfy the following
governing equations and boundary conditions:

governing equations

φg ,xx + φg ,yy = 0 for 1 + η1 6 y < +∞, −∞ < y 6 −1 + η2, (1)

φl ,xx + φl ,yy = 0 for − 1 + η2 6 y 6 1 + η1; (2)

boundary conditions

φl ,y − ηj ,t − φl ,xηj ,x = 0, (3)

φg ,y − ηj ,t − φg ,xηj ,x = 0, (4)

1
2

+ ρφg ,t − φl ,t + 1
2
ρ(φ2

g ,x + φ2
g ,y )− 1

2
(φ2

l ,x + φ2
l ,y ) =

(−1)j

We

ηj ,xx

(1 + η2
j ,x )3/2

, (5)

which are valid at y = (−1)j+1 + ηj , and j = 1 represents the upper interface and
j = 2 the lower interface. In the above equations, the dimensionless Weber number
and the gas density (or the gas-to-liquid density ratio) are defined as

We =
ρlU

2
l a

σ
, ρ =

ρg

ρl
. (6)

Equations (3) and (4) represent the kinematic boundary condition – the gas–liquid
interfaces are material surfaces, and the fluid particles initially on the interfaces
will remain there subsequently. Equation (5) is the dynamic boundary condition,
stating that the difference in the normal stresses across the interfaces is balanced
by the surface tension forces. In order to solve the above equations subject to the
boundary conditions given, an initial condition must be specified as well. The initial
condition can commonly be in the form of surface, pressure or velocity disturbances
or any combinations among them. Since the following development does not require
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a knowledge of the specific forms of the initial condition, we shall defer the statement
of the initial condition until the solution section later on. It only suffices to state here
that the initial disturbance has a characteristic amplitude η0, which is an independent
variable in the following perturbation analysis and can be measured in laboratory
experiments as in Asare, Takahashi & Hoffman (1981).

In the present study, we shall seek solutions to the governing equations with the
boundary conditions by using a perturbation expansion technique with the initial
disturbance amplitude η0 as the perturbation parameter. Hence it is assumed that the
location of the two gas–liquid interfaces can be expressed as follows:

ηj =

∞∑
n=1

ηn0ηjn(x, t). (7)

If ηjn and all its derivatives can be considered to have the same order of magnitude,
then it is evident from (3) and (4) that the velocity potential for the liquid and gas
phases takes the following form:

φl =

∞∑
n=0

ηn0φln(x, y, t), (8)

φg =

∞∑
n=1

ηn0φgn(x, y, t), (9)

where φl0 = x represents the normalized base flow field.
Because the governing equations, (1) and (2), are linear, they must be satisfied by

each of the φln and φgn independently. The corresponding boundary conditions for
each order of ηn0 are determined by substituting (7)–(9) into (3)–(5), and equating the
coefficients of the same power of ηn0 . Note that since the interfacial location ηj(x, t)
is a part of the solution, and not known a priori, the velocity potentials φln and φgn
evaluated at y = (−1)j+1 + ηj are approximated by a Taylor series expansion around
y = (−1)j+1

φ|y=(−1)j+1+ηj = φ|y=(−1)j+1 + ηjφ,y|y=(−1)j+1 +
η2
j

2!
φ,yy|y=(−1)j+1 +

η3
j

3!
φ,yyy|y=(−1)j+1 + · · · ,

(10)

where ηj is given in (7). Thus the obtained boundary conditions are now linear at
each order of the approximation, and all nonlinear terms involved contain lower-
order solutions which at any given order will have been solved and known. Hence,
in principle successively higher orders can be solved to yield solutions that are
progressively more accurate.

As discussed in the introduction, this study will only solve the first three orders for
the governing equations and corresponding boundary conditions which are evaluated
at the unperturbed interfaces y = (−1)j+1. They are given below, after lengthy
algebraic manipulations:
η0 (or the first) order

φg1,xx + φg1,yy = 0 for + 1 6 y < +∞, and −∞ < y 6 −1, (11)

φl1,xx + φl1,yy = 0 for − 1 6 y 6 +1, (12)

φl1,y − ηj1,t − ηj1,x = 0, (13)
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φg1,y − ηj1,t = 0, (14)

ρφg1,t − φl1,t − φl1,x − (−1)j
ηj1,xx

We
= 0; (15)

η2
0 (or the second) order

φg2,xx + φg2,yy = 0 for + 1 6 y < +∞, and −∞ < y 6 −1, (16)

φl2,xx + φl2,yy = 0 for − 1 6 y 6 +1, (17)

φl2,y − ηj2,t − ηj2,x = −ηj1φl1,yy + ηj1,xφl1,x , (18)

φg2,y − ηj2,t = −ηj1φg1,yy + ηj1,xφg1,x , (19)

ρφg2,t − φl2,t − φl2,x − (−1)j
ηj2,xx

We
= −ρ[ηj1,tφg1,y + ηj1φg1,yt] + [ηj1,tφl1,y + ηj1φl1,yt]

− 1
2
ρ(φ2

g1,x + φ2
g1,y) + 1

2
(φ2

l1,x + φ2
l1,y) + [ηj1,xφl1,y + ηj1φl1,xy]; (20)

η3
0 (or the third) order

φg3,xx + φg3,yy = 0 for + 1 6 y < +∞, and −∞ < y 6 −1, (21)

φl3,xx + φl3,yy = 0 for − 1 6 y 6 +1, (22)

φl3,y − ηj3,t − ηj3,x = −ηj2φl1,yy − ηj1φl2,yy − 1
2
η2
j1φl1,yyy + ηj1,xφl2,x

+ηj2,xφl1,x + ηj1φl1,xyηj1,x, (23)

φg3,y − ηj3,t = −ηj2φg1,yy − ηj1φg2,yy − 1
2
η2
j1φg1,yyy + ηj1,xφg2,x

+ηj2,xφg1,x + ηj1φg1,xyηj1,x, (24)

ρφg3,t − φl3,t − φl3,x − (−1)j
ηj3,xx

We

= −ρ[ηj1,tφg2,y + ηj1φg2,yt + ηj2,tφg1,y + ηj2φg1,yt + ηj1ηj1,tφg1,yy + 1
2
η2
j1φg1,yyt]

+[ηj1,tφl2,y + ηj1φl2,yt + ηj2,tφl1,y + ηj2φl1,yt + ηj1ηj1,tφl1,yy + 1
2
η2
j1φl1,yyt]

−ρ[φg1,x(φg2,x + ηj1,xφg1,y + ηj1φg1,xy) + φg1,y(φg2,y + ηj1,yφg1,y + ηj1φg1,yy)]

+[φl1,x(φl2,x + ηj1,xφl1,y + ηj1φl1,xy) + φl1,y(φl2,y + ηj1,yφl1,y + ηj1φl1,yy)

+(ηj1,xφl2,y + ηj1φl2,xy + ηj2,xφl1,y + ηj2φl1,xy + ηj1ηj1,xφl1,yy + 1
2
η2
j1φl1,xyy)]

−3(−1)j

2We
ηj1,xxη

2
j1,x . (25)

3. Solution
In order to solve the governing equations subject to the boundary conditions given

in the previous section for the first three orders, an initial condition must be specified.
In practice, surface deformation can develop from surface, velocity or pressure distur-
bances or a combination imposed initially on the flow field. Although the first-order
solution will remain the same, regardless of the initial form of disturbances imposed,
the higher orders of solution will depend sensitively on the initial condition. For
the present study, we shall assume that the surface deformation is due initially to
a sinusoidal surface wave with amplitude η0 and wavenumber k. For liquid sheets
in a stationary gas medium, it is known (Squire 1953; Hagerty & Shea 1955; Li &
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Tankin 1991) that the surface waves on the two gas–liquid interfaces can propagate
exactly in or out of phase, called sinuous or varicose waves, and the sinuous waves
are always more unstable than the corresponding varicose waves under the practically
important flow conditions. Therefore, the present study will only seek solution for the
development of sinuous waves and the consequent breakup of the liquid sheet.

The first-order solution is determined from the following initial condition:

ηj1(x, 0) = cos (kx); and ηj1,t(x, 0) = −α1 sin (kx), (26)

where k is the dimensionless wavenumber of the disturbance and is related to the
wavelength λ by k = 2π/λ, and it is the same as the linearized analysis of Squire
(1953), Hagerty & Shea (1955), and Li & Tankin (1991). The results are given below
for the completeness of the presentation:

φl1 =
sinh (ky)

cosh (k)

[(
ψj1,t

k
+ iψj1

)
exp (ikx) +

(
ψj1,t

k
− iψj1

)
exp (−ikx)

]
, (27)

φg1 = (−1)j
[
ψj1,t

k
exp (ikx) +

ψj1,t

k
exp (−ikx)

]
exp [k + (−1)jky], (28)

ηj1 = ψj1 exp (ikx) + ψj1 exp (−ikx), (29)

where the amplitude of the surface disturbance is

ψj1 = 1
2

cosh (β1t) exp (iα1t) (30)

and α1 and β1 are the real and imaginary parts of the complex frequency ω1 (= α1+iβ1)
and its complex conjugate ω1 (= α1 − iβ1), and are given as follows:

α1 = − k tanh (k)

tanh (k) + ρ
, (31)

β1 = ±k{ρ tanh (k)− [tanh (k) + ρ]k/We}1/2
tanh (k) + ρ

. (32)

It is clear that (29) indicates that the first-order surface deformation ηj1 is the
same for the upper (j = 1) and lower (j = 2) interfaces, hence it represents a
sinuous wave, as we initially set out to find. The above solutions show that if
the wavenumber k is such that for a given flow condition (i.e. fixed ρ and We)
ρ tanh (k)− [tanh (k) + ρ]k/We > 0, then β1 is real, and the surface waves grow. For
ρ tanh (k) − [tanh (k) + ρ]k/We < 0, β1 is purely imaginary, and the surface waves
oscillate. The pure oscillation without decay for this case is due to the assumption
of inviscid fluids (Li & Tankin, 1991), because viscous effects are stabilizing for
short-wavelength disturbances and decrease the disturbance energy (Li 1994), hence
resulting in the oscillation of surface waves with a decaying amplitude. Therefore,
the wavenumber k corresponding to ρ tanh (k) − [tanh (k) + ρ]k/We = 0 represents
the cut-off wavenumber kc, which divides the wavenumber spectrum into a region
of stable travelling waves and a region of exponentially growing waves with an
optimum wavenumber that corresponds to the fastest growing wave. This optimum
wavenumber is often referred to as the dominant wavenumber.
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Figure 2. Schematic of a planar and a sinuously perturbed liquid sheet for the analysis of
conservation of liquid mass.

It should be pointed out that concern has been raised (Spielbauer & Aidun 1994) as
to whether the first-order solution (i.e. the linearized analysis) satisfies the conservation
of mass for the liquid phase. Consider a planar liquid sheet segment of one wavelength
λ long and an arbitrary width W , as illustrated in figure 2. For the sake of discussion
in this paragraph, variables used are dimensional quantities. The unperturbed sheet
has a uniform thickness of 2a (the distance between two interfaces in the vertical
direction), and the mass contained within this segment, mu, is then

mu = ρlW (2a)λ. (33)

For the sinuously perturbed sheet, the mass contained within the distance of one
wavelength in the flow direction, mp, is

mp =

∫ L

0

ρlW (2h) dl, (34)

where L is the length of the sinuously perturbed sheet segment as measured along the
deformed surface of the sheet, dl is the corresponding differential length, and 2h is
the distance between the two interfaces normal to the deformed surface, as shown in
figure 2. It should be emphasized that the distance between the two interfaces in the
vertical direction remains unchanged, i.e. 2a, because the two interfaces are displaced
in the same direction by exactly the same amount by the sinuous waves. However,
the normal distance, 2h, is not a constant, rather it varies along the deformed sheet,
depending on the local curvature of the sheet and it reaches the maximum value of
2a at the wave crests and troughs. From the geometrical relation shown in figure 2,
we have

dl =
dx

cos θ
, 2h = (2a) cos θ. (35)
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Now substitution of (35) into (34) results in

mp =

∫ λ

0

ρlW [(2a) cos θ]

(
dx

cos θ

)
=

∫ λ

0

ρlW (2a) dx

= ρlW (2a)λ

= mu. (36)

Hence, the liquid mass is conserved before and after the sinuous waves set in. To
demonstrate the mass conservation from another perspective, consider the perturbed
liquid sheet surfaces to be represented by the following equations (Li & Tankin 1991),
as shown in figure 1:

y1 = +a+ η∗1 for the upper surface, (37)

y2 = −a+ η∗2 for the lower surface. (38)

The mass contained within one wavelength λ is then

mp =

∫ λ

0

ρlW (y1 − y2) dx

=

∫ λ

0

ρlW [2a+ (η∗1 − η∗2)] dx. (39)

For the sinuously perturbed sheet, η∗1 = η∗2 . Therefore, the above integral yields
mp = ρlW (2a)λ = mu. This method can be easily utilized to show that the higher-
order solutions obtained later in this study satisfy the conservation of mass as well.

For the second-order solution, we shall assume that the surface deformation is in
the following form:

ηj2 = ψj2 exp (2ikx) + ψj2 exp (−2ikx) (40)

with the initial condition

ηj2(x, 0) = 0 and ηj2,t(x, 0) = 0. (41)

Substituting (40) into (18) and (19), respectively, along with the known first-order
solutions suggests the following form for the velocity potentials for the liquid and gas
phases:

φl2 = fl2(y)[a22(t) exp (2ikx) + a22(t) exp (−2ikx)] + Al2(t), (42)

φg2 = fg2(y)[b22(t) exp (2ikx) + b22(t) exp (−2ikx)] + Ag2(t). (43)

The unknown functions of y can be determined by substituting the above equations
into the governing equations, (16) and (17), and the time dependence can be obtained
from the kinematic and dynamic boundary conditions, (18)–(20), and the initial
conditions, (41). After considerable effort, the velocity potentials for the liquid and
gas phases are determined as follows:

φl2 = − cosh (2ky)

(2k) sinh (2k)

{[
2k2 tanh (k)

(
ψj1ψj1,t

k
+ iψ2

j1

)
+ ψj2,t + 2ikψj2

]
j=2

exp (2ikx)

+

[
2k2 tanh (k)

(
ψj1ψj1,t

k
− iψ2

j1

)
+ ψj2,t − 2ikψj2

]
j=2

exp (−2ikx)

}
+ Al2(t), (44)
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φg2 = −exp [2k + (−1)j2ky]

2k
[(−(−1)jψj2,t + 2kψj1ψj1,t) exp (2ikx)

+(−(−1)jψj2,t + 2kψj1ψj1,t) exp (−2ikx)] + Ag2(t), (45)

where a line over a variable denotes the complex conjugate of that variable, the
temporal part of the disturbance amplitude is given

ψj2 = (−1)j[A1 exp (iω2t) + A1 exp (iω2t)

+A2 exp (2iω1t) + A2 exp (2iω1t) + A3 exp (2iα1t)], (46)

and the second-order complex temporal frequency is

ω2 = α2 + iβ2, (47)

where

α2 = − (2k) coth (2k)

coth (2k) + ρ
,

β2 = ± (2k){ρ coth (2k)− [coth (2k) + ρ](2k)/We}1/2
coth (2k) + ρ

.

 (48)

The purely time-dependent functions Al2(t) and Ag2(t), and the integration constants
A1, A2, and A3 are given in Appendix A.

The equation for the surface deformation, ηj2, indicates that the growth of the first
harmonic contributes to the liquid sheet breakup, and the liquid mass is conserved
up to the second order, in contrast with the Rayleigh breakup of circular liquid
jets (Yuen 1968). It is also noticed that ηj2 has the same magnitude, but opposite
sign for the upper (j = 1) and lower (j = 2) interfaces. Coupled with (47)–(48), it
is clear that the second-order surface disturbance is varicose in nature. Therefore,
during the wave growth the two interfaces will not keep the same distance apart due
to the growth of the first-harmonic varicose disturbance. The velocity potential for
the liquid and gas phases includes the growth of the first harmonic and a purely
time-dependent term which arises from the acceleration of the fluid. Similar to the
Rayleigh breakup of circular liquid jets (Yuen 1968), the growth of the first harmonic
is due to two effects. One is the feeding of energy from the fundamental as shown
by the terms having a growth rate of 2ω1 and 2ω1, and the other is due to the
inherent instability of the first harmonic of the varicose disturbances itself when the
dimensionless wavenumber 2k is such that ρ coth (2k) − [coth (2k) + ρ](2k)/We > 0.
The latter is quite different from the Rayleigh breakup (Yuen 1968) where both the
first harmonic and the fundamental have the same wave characteristics, that is, they
both belong to the varicose disturbances.

For the third-order approximation, substitution of the first- and second-order
solutions into the boundary conditions, (23) and (24), suggests that the surface
disturbance should be sought in the following form:

ηj3 = ψj3(t) exp (3ikx) + ψj3(t) exp (−3ikx) +Ψj3(t) exp (ikx) +Ψj3(t) exp (−ikx) (49)

and the initial condition for the present problem is

ηj3(x, 0) = 0 and ηj3,t(x, 0) = 0. (50)

With (49), the kinematic boundary conditions indicate that the velocity potentials for
the liquid and gas phase should be sought in the following form:

φl3 = fl31(y)[a31(t) exp (ikx) + a31(t) exp (−ikx)]

+fl33(y)[a33(t) exp (3ikx) + a33(t) exp (−3ikx)] + Bl3(t), (51)
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φg3 = fg31(y)[b31(t) exp (ikx) + b31(t) exp (−ikx)]

+fg33(y)[b33(t) exp (3ikx) + b33(t) exp (−3ikx)] + Bg3(t). (52)

Substituting the above two equations into (22) and (21) leads to expressions for
the y dependence with unknown integration constants. These constants and the
time-dependent coefficients a, b and B are obtained from the boundary and initial
conditions, similar to the second-order solution. It turns out that ρBg3−Bl3 = constant,
and hence both Bg3 and Bl3 can be neglected without any effect on the resulting flow
field or on the balance of the normal stresses at the two boundaries. The final solution
for the third order then becomes

φl3 =
sinh (ky)

k cosh (k)
[a31(t) exp (ikx) + a31(t) exp (−ikx)]

+
sinh (3ky)

(3k) cosh (3k)
[a33(t) exp (3ikx) + a33(t) exp (−3ikx)], (53)

φg3 = (−1)j
exp [k + (−1)jky]

k
[b31(t) exp (ikx) + b31(t) exp (−ikx)]

+(−1)j
exp [(3k) + (−1)j(3k)y]

(3k)
[b33(t) exp (3ikx) + b33(t) exp (−3ikx)], (54)

where the time-dependent coefficients a and b are given in Appendix B, and the
temporal part of the amplitude of surface disturbance is

ψj3 = D1 exp (iω3t) + D1 exp (iω3t) + D2 exp [i(ω1 + ω2)t] + D2 exp [i(ω1 + ω2)t]

+D3 exp [i(ω1 + ω2)t] + D3 exp [i(ω1 + ω2)t] + D4 exp [i(ω1 + 2ω1)t]

+D4 exp [i(ω1 + 2ω1)t] + D5 exp (i3ω1t) + D5 exp (i3ω1t)

+D6 exp [i(ω1 + 2α1)t] + D6 exp [i(ω1 + 2α1)t], (55)

Ψj3 = F1 exp (iω1t) + F1 exp (iω1t) + F2 exp [i(ω2 − ω1)t] + F2 exp [i(ω2 − ω1)t]

+F3 exp [i(ω2 − ω1)t] + F3 exp [i(ω2 − ω1)t] + F4 exp [i(2ω1 − ω1)t]

+F4 exp [i(2ω1 − ω1)t] + F5 exp [i(ω1 − ω1)t] + F5 exp [i(ω1 − ω1)t]

+F6 exp [i(2α1 − ω1)t] + F6 exp [i(2α1 − ω1)t] + F7, (56)

where the third-order complex temporal frequency is

ω3 = α3 + iβ3, (57)

α3 = − (3k) tanh (3k)

tanh (3k) + ρ
, (58)

β3 = ± (3k){ρ tanh (3k)− [tanh (3k) + ρ](3k)/We}1/2
tanh (3k) + ρ

, (59)

and the constants of integration, D and F , are given in Appendix B.
The above third-order solution indicates that ηj3 is the same for both the upper and

lower interfaces since ψ13 = ψ23 and Ψ13 = Ψ23. Therefore, the third-order surface
deformation is sinuous in nature, in contrast to the second-order one which is varicose.
It is also noticed that the liquid mass is conserved up to the third order. As a result
of the interaction among the lower harmonics, not only a higher harmonic (exp (3ikx)
and exp (−3ikx)) appears, but there also exists a feedback into the fundamental



292 S. A. Jazayeri and X. Li

(exp (ikx) and exp (−ikx)) for the velocity potentials for both the liquid and gas
phases, as well as for the surface deformation. Similar to the first harmonic, the
growth of the second harmonic is due to two effects: the direct feeding of energy from
the lower harmonics, and the inherent instability of the second harmonic itself when
the dimensionless wavenumber satisfies the following condition:

ρ tanh (3k)− [tanh (3k) + ρ](3k)/We > 0. (60)

Hence, the expression for the evolution of the two gas–liquid interfaces for an initial
harmonic surface disturbance is, up to the third order

ηj =

∞∑
n=0

ηn0ηjn

= η0[ψj1 exp (ikx) + ψj1 exp (−ikx)] + η2
0[ψj2 exp (2ikx) + ψj2 exp (−2ikx)]

+η3
0[ψj3 exp (3ikx) + ψj3 exp (−3ikx) +Ψj3(t) exp (ikx) +Ψj3(t) exp (−ikx)]. (61)

This expression can be re-written in terms of a complex Fourier series as

ηj =

∞∑
n=1

[Cjn exp (nikx) + Cjn exp (−nikx)] (62)

where

Cjn =

∞∑
m=n

Hjmn(k, t)η
m
0 ,

and from (61), the Hjmn are known up to n = 3 and m = 3:

Hj11 = ψj1, Hj21 = 0, Hj31 = Ψj3,

Hj22 = ψj2, Hj32 = 0, Hj33 = ψj3,

and the ψjm are given earlier in (30), (46) and (55), and Ψj3 is given in (56). The above
Fourier series represents the distortion of the surface waves, and it is noticed that
there does not exist a purely time-dependent series, as is the case for the nonlinear
Rayleigh breakup of circular liquid jets (Yuen 1968). This is because for the present
liquid sheets the mass of the liquid is always conserved for the sinusoidal surface
deformation.

4. Results and discussion
A typical result of (61) is shown in figure 3 for the dimensionless surface deformation

as a function of dimensionless distance for the dimensionless initial disturbance
amplitude of 0.1, the Weber number of 40 and the gas-to-liquid density ratio of 10−3

which approximates the situation of liquid water in ambient air. The dimensionless
wavenumber of 0.02 is almost equal to the dominant wavenumber for the sinuous
disturbance of the linearized theory. It is seen that the surface wave grows in time, but
remains sinusoidal and maintains its sinuous character for the majority of its growth
time, the deviation from the linear theory is small, and the distance between the two
interfaces is kept almost constant along the wavelength up to the dimensionless time
of 1000. After that time, the nonlinear effect becomes significant and the wave form is
distorted considerably. At t = 1298, the distance between the two interfaces vanishes
near the half and full wavelength, which is different from the conclusions reached by
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Figure 3. Evolution of the dimensionless surface deformation y as a function of dimensionless
distance x for We = 40, ρ = 0.001, k = 0.02, and η0 = 0.1. The dimensionless time t is specified on
the figure.

Clark & Dombrowski (1972) who found that the sheet breakup occurred at positions
corresponding to 3/8 and 7/8 of the length of the fundamental wave. However, the
liquid sheet breaks off at half-wavelength intervals, a result consistent with that of
Clark & Dombrowski (1972).

Figure 4 illustrates the effect of the fundamental, and the first and second harmonics
on the evolution of the surface waves at the breakup time under the same conditions
as those of figure 3. It is clear from figure 4(a) that the first-order (i.e. linearized)
analysis does not lead to reasons as to why the liquid sheet breakup occurs or how
the liquid sheet breaks up, because the two gas–liquid interfaces remain exactly the
same distance apart as the wave grows temporally. However, the liquid sheet thinning
and eventual breakup appear when the first harmonic is added onto the fundamental
wave, as shown in figure 4(b), because the first harmonic is essentially a varicose
disturbance that causes the pinch-off of the sheet at half-wavelength intervals. The
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Figure 4. The effect of the fundamental, and the first and second harmonic on the dimensionless
surface deformation y as a function of dimensionless distance x at the breakup time t = 1298
for We = 40, ρ = 0.001, k = 0.02, and η0 = 0.1. (a) Fundamental; (b) fundamental plus the first
harmonic; (c) fundamental plus the first and second harmonics.

surface wave shown in figure 4(c), where the first and second harmonics are included
in addition to the fundmental, is significantly different from those shown in figures 4(a)
and 4(b); in particular the occurrence of the sheet breakup is predicted in figure 4(c),
which contrasts with the result shown in figure 4(b) where the sheet has not broken
up. Therefore, as Bogy (1979) pointed out, it is necessary to include the analysis up
to the third order, if the breakup length (or time) and features of the breakup details
are required. This figure also indicates that the thinning of the sheet is caused by
the growth of harmonic waves, and that the breakup occurs near the crests of each
interface at the low density ratio of ρ = 0.001. These observations are in agreement
with the previous results of Rangel & Sirignano (1991).

The behaviour of the liquid sheet and the surface wave growth for different flow
conditions are qualitatively similar to those shown in figure 3, but an important
difference occurs in the rate of growth of the disturbance, therefore the breakup time.
Figure 5 shows the effects of the initial disturbance amplitude η0 on the surface wave
development for the Weber number of 40, density ratio of 10−3 and the wavenumber
of 0.0204, which corresponds to the dominant wavenumber of the linearized theory.
It is seen that as the initial disturbance amplitude is increased, the liquid sheet breaks
up at earlier times, as expected. For example, the dimensionless breakup time is 2875
for η0 = 0.001, and is only 815 when η0 = 0.3. It is also observed that the positions
at which the breakup occurs change as the initial amplitude is varied, although the
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breakup still occurs at the half-wavelength interval. It is also interesting to note that
the wave amplitude at the sheet breakup is about the same for different values of η0.
Further, the nonlinear effect is clearly observable during the early part of the wave
growth for the large value of η0 = 0.3, whereas for the small values of η0 (such as
0.001 shown in figure 5a) the linear theory is valid for a substantial amount of the
growth time, up to the time t = 2400 which is over 83% of the breakup time, even
though the wave amplitude is not that small compared to the sheet thickness.

The effect of the gas-to-liquid density ratio on the surface wave development is
given in figure 6 for We = 40 and η0 = 0.1. The wavenumber used for each value of
the density ratio is the dominant wavenumber under the given conditions according
to the linearized theory. The results for ρ = 10−3 are given in figure 5(c), whereas
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figure 6(a–c) presents the results for ρ = 0.01, 0.02 and 0.05, respectively. As expected,
the liquid sheet breaks up considerably earlier for density ratios of large values than
for those of small values. It is also evident that the wave amplitude at the sheet
breakup increases as the density ratio is increased; in particular the amplitude for
ρ = 0.05 is nearly four times that of the lower values of the density ratio.

Figure 7 shows the effect of the Weber number on the liquid sheet deformation for
ρ = 0.001 and η0 = 0.1 with the case of We = 40 given in figure 5(c). Once again
the wavenumber used is the dominant wavenumber of the linearized theory for the
conditions given. It is observed that the breakup time is reduced as the Weber number
is increased, agreeing with known experimental observations. At the Weber number
of 400 shown in figure 7(c), the surface wave exhibits both sinusoidal and varicose
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The case responding to the dominant wavenumber (k = 0.0204) is given in figure 5(c).

deformation before the sheet breakup, which is clearly different from the cases of
smaller Weber numbers shown in figures 5(c), 7(a, b), where the surface deformation
is much more clearly sinuous for the majority of the wave development.

In the case of circular liquid jet breakup in the Rayleigh regime, one main drop and
one or more usually smaller drops, referred to as the satellite or spherous drops, are
formed, corresponding to each wavelength of an unstable disturbance. The satellite
drop formation is particularly favoured for disturbances of long wavelengths (Yuen
1968; Rutland & Jameson 1971). Therefore, the effect of wavelength on the surface
wave development is investigated, and typical results are presented in figure 8 for
We = 40, ρ = 10−3 and η0 = 0.1. Under this condition, the dominant wavenumber of
the linearized theory is equal to 0.0204, and the corresponding results have been given
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in figure 5(c). It is evident that the liquid sheet breakup occurs at half-wavelength
intervals, as observed earlier, and this parcel of liquid is expected to contract into
a ligament under the action of surface tension. There does not exist any indication
of ‘satellite’ ligament formation from the liquid sheet breakup. This is because,
for circular liquid jet breakup, the second-order term of the perturbation solution
would cause the formation of the satellite drops (Yuen 1968), whereas sheet breakup,
according to the present analysis, is due to the second-order term which is essentially
varicose in nature, and the next higher-order term of varicose surface deformation is
the fourth-order term, which is not included in the present analysis and might be too
small in magnitude in reality to result in the ‘satellite’ ligament formation. Therefore,
it would be interesting to consider the initial condition of the fundamental mode that
includes both sinuous and varicose disturbances.

At this point, the good agreement between the linearized theory and Hagerty &
Shea’s (1955) as well as Crapper, Dombrowski & Pyott’s (1975) experimental results
for liquid sheet instability can be explained. Because the second-order term of the
perturbation solution is varicose in nature, and it provides a mechanism for the liquid
sheet thinning and eventual breakup, it does not contribute to the maximum sinusoidal
deformation of the liquid sheet. Experimentally, sinuous waves are predominant, and
the growth of sinuous waves has been determined by measuring the maximum surface
deformation. Therefore, the correction from the linearized theory is only in the third
order for this method of measurements. It might be concluded that for any growth
of an initially sinuous disturbance, the above method of measurement would provide
a reasonably accurate approach for the measurement of the linearized growth rate of
the sinuous waves on plane liquid sheets.

In the present temporal instability analysis, temporal frequencies for the funda-
mental, and the first and second harmonics are treated as complex. That implies
that surface waves grow in time everywhere along the sheet, as shown in figures 3–8.
This is contrary to experimental observations (Li 1993). A more physically consistent
analysis can be made in terms of spatial instability by treating the wavenumber as
complex and the temporal frequency as real. The spatial instability is particularly
appropriate in describing the instability of liquid sheets subjected to disturbances at
the nozzle exit. Li (1993) shows that for Weber numbers much larger than unity, a
situation typical of practical applications, the spatial instability of plane liquid sheets
is related to the corresponding temporal instability through Gaster’s transformation
(Gaster 1962), and the phase velocity and group velocity of the surface waves are
essentially equal to the liquid sheet velocity. Hence, the results of the present study
may be transformed into the spatial instability. In the non-dimensional form the
spatial distance and time become the same when a/Ul is used as the time scale and
the half-sheet thickness a as the length scale, which is the case for the present study.
As a result, the time required for the sheet to break up (or the breakup time) in the
temporal analysis becomes equal numerically to the distance required for the sheet
to disintegrate (or the so-called breakup length). By replacing the dimensionless time
t in (61) by the dimensionless distance x from the nozzle exit, the present temporal
development of the surface wave is transformed into the spatial evolution, and a
typical result is shown in figure 9 for We = 280.78, ρ = 0.00129, and k = 0.183. The
initial amplitude is varied from η0 = 0.01 to 0.2, and the wavenumber of k = 0.183
corresponds to the dominant value of the linear theory. It is seen that the wave
develops at the nozzle exit, and its amplitude increases downstream. Although the
wave remains sinuous for most of the sheet length, nonlinear effects cause the sheet
thinning and pinching that lead to the eventual breakup of the sheet. As the initial
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Figure 9. Spatial surface deformation for We = 280.78, ρ = 0.00129, k = 0.183 and η0 = 0.01 (a);
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disturbance amplitude η0 is increased, the sheet distortion due to the nonlinear effects
becomes more pronounced and appears much closer to the nozzle exit, and the sheet
breakup length is reduced. Also the wave amplitude at the breakup point decreases
slightly with increasing initial disturbance amplitude. The results clearly show that
thinning of the liquid sheet occurs as a result of the growth of the first harmonic
which acts as a varicose wave with its wavelength equal to half of the fundamental.

In practical applications, the breakup time (or length) is of significant importance
because it indicates the region where the sheet disintegration and droplet formation
occurs. This knowledge is particularly important for numerical simulations of spray
systems. Figure 10 shows the breakup time as a function of the wavenumber for
different initial disturbance amplitudes under the condition of We = 40 and ρ =
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10−3. As observed earlier, the breakup time first decreases for each initial amplitude
η0 until reaching a minimum value and then increases towards infinity when the
wavenumber approaches the cut-off wavenumber kc. This is because the surface
waves become stable for wavenumbers 6 0 and > kc, corresponding to infinitely
long breakup time. It is also seen that the breakup-time curve is almost flat for a
significant region of the unstable wavenumbers including the dominant wavenumber,
suggesting that the breakup time (or length) does not change significantly with
the disturbance wavelength. Further, the present results show that a larger initial
disturbance amplitude results in shorter breakup time, as expected. For the purpose of
comparison, it should be emphasized that the linear stability analysis yields infinitely
large breakup time, as discussed in the Introduction section.

The effect of the Weber number on the breakup time (length) is shown in figure 11
for several values of initial disturbance amplitude and two values of the density ratio
ρ. It is clear that the breakup time decreases as the Weber number is increased. This
is because the higher the Weber number, the larger the aerodynamic interactions
between the liquid sheet and the surrounding gas, and the latter is responsible for the
growth of the surface waves and the eventual disintegration of the sheet. However,
for small Weber numbers, the reduction in the breakup time is very rapid as We
is increased, and then the decrease in the breakup time becomes very gradual for
large Weber numbers. This might explain why the breakup length changes little for
different flow conditions under practical operating conditions of large We. It is also
shown that the breakup time is reduced by a larger value of the initial disturbance
amplitude and the density ratio. More details are shown in figure 12 for the effect
of the gas-to-liquid density ratio on the breakup time. It is seen that the breakup
time is reduced significantly for an increase in the density ratio when ρ is small, and
then it almost approaches an asymptotic value for larger values of ρ. This suggests
that for practical situations such as in aircraft engines where the combustor chamber
pressure is high (ranging from 20 to 30 atm.), the breakup length might be taken as
an invariant regardless of the magnitudes of fluctuations in the flow conditions.

Figure 13 shows the effect of the initial amplitude of the disturbance on the
breakup time of the liquid sheet. The vertical coordinate is linear, while the horizontal
coordinate is on the logarithmic scale. The results indicate that increasing the initial
amplitude of the disturbance reduces the breakup time significantly, as pointed out
earlier. For the small values of η0 shown in the figure, the dependence of the breakup
time on η0 is nearly logarithmic, because the linearized theory is valid for the majority
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of the wave growth history. The deviation from the logarithmic dependence (i.e. the
linearized theory) increases for larger values of η0. This can be seen more clearly
by plotting the wave amplitude over time for both linearized and the present third-
order theory, as shown in figure 14. For all the results presented in this figure, the
wavenumber for the maximum growth predicted by the linearized theory is used, and
the curves end at the sheet breakup time. The solid curves represent the results for
the linearized theory, and the dashed curves are the results for the present third-order
theory. As expected, the linearized results are valid, strictly speaking, only for a
brief time following the onset of the disturbance. Then the amplitude growth becomes
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Figure 13. The effect of the initial disturbance amplitude on the breakup time (length) for
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Figure 14. The effect of the initial disturbance amplitude on the growth of the wave amplitude.
We = 40, ρ = 0.005 and η0 = 0.01, 0.1, and 0.2, respectively. The solid curves: linearized results;
the dashed curves: present nonlinear results. The curves end at the sheet breakup time.

gradually less than the exponential rate predicted by the linear theory. For large values
of η0 (such as 0.1 and 0.2 shown in the figure), the difference between the linear and
nonlinear results are significant close to the breakup point, and the difference increases
with η0. However, for small values of η0 (such as 0.01 or smaller) the linear theory
is valid for a significant portion of the wave growth history, and becomes essentially
valid even close to the breakup point for smaller initial amplitude of disturbances. As
pointed out earlier, the wave amplitude at the breakup point decreases as the initial
amplitude is increased. The breakup time has been calculated for a more broad range
of various parameters, and has been correlated as a function of the Weber number,
the density ratio and the initial disturbance amplitude, and the correlation has been
used for the modelling of liquid atomization and sprays (Mitra & Li 1999).

5. Conclusions
Nonlinear effects on the instability and consequent breakup process of plane

liquid sheets moving in an inviscid and incompressible gas medium at rest have
been investigated by a perturbation expansion technique with the initial amplitude
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of the disturbance as the perturbation parameter. The first-, second- and third-
order governing equations have been derived along with appropriate initial and
boundary conditions which describe the characteristics of the fundamental, the first
and second harmonics, and solutions up to the third order in the initial amplitude
of the disturbance have been obtained for an initially sinusoidal sinuous surface
disturbance. The results indicate that the thinning and subsequent breakup of liquid
sheets are due to nonlinear effects with the generation of higher harmonics as well as
feedback into the fundamental. In particular, the first harmonic of the fundamental
sinuous mode is a varicose wave that leads to the pinching and eventual breakup of the
liquid sheet at half-wavelength intervals of the fundamental wave, and it contributes
little to the sinuous deformation of the liquid sheets. The contribution to the sinuous
surface deformation is due to the fundamental with a correction arising from the third-
order solution. Therefore, the good agreement, reported in the literature, between the
growth rates predicted by the linearized theory and experimental results is due to the
particular method of measurements employed, i.e. through the measurements of the
maximum surface deformation. The breakup time (or length) of the liquid sheet is
calculated, and the effect of the various flow parameters is investigated. It is found
that the breakup time (or length) is reduced by an increase in the initial amplitude
of disturbance, the Weber number and the gas-to-liquid density ratio, and it becomes
asymptotically insensitive to the variations of the Weber number and the density
ratio when their values become very large. It is also found that the breakup time (or
length) is a very weak function of the wavenumber unless it is close to the cut-off
wavenumbers.

This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

Appendix A

Ag2(t) = −1

4

[
(α2

1 − β2
1 )t+

(
3β2

1 + α2
1

2β1

)
sinh (2β1t)

]
,

Al2(t) =
1

4
[β2

1 − (α1 + k)2]

(
1 + tanh 2(k)

2

)
t+

1

4

[
− β1

(
5 + tanh 2(k)

4

)
− (α1 + k)2

β1

1 + tanh 2(k)

4

]
sinh (2β1t),

A1 =
C

(ω2 − ω2)(ω2 − 2ω1)
+

C

(ω2 − ω2)(ω2 − 2ω1)
+

E

(ω2 − ω2)(ω2 − 2α1)
,

A2 =
C

(ω2 − 2ω1)(ω2 − 2ω1)
, A3 =

E

(ω2 − 2α1)(ω2 − 2α1)
,

C = − 1
32

[(tanh 2(k) + 4 coth (2k) tanh (k)− 5)(ω2
1 + 2kω1 + k2)],

E = − 1
16
{(k2 + 2kα1)[tanh 2(k) + 4 coth (2k) tanh (k)− 5]

+2(β2
1 + α2

1)[tanh (k) coth (2k) + 1
2

tanh 2(k)− 3
2
]

−2(β2
1 − α2

1)[tanh (k) coth (2k)− 1]}.
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Appendix B.

a31 = Ψj3,t + ikΨj3 − k2 tanh (k)ψj2
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ψj1,t

k
− iψj1
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−k3

[
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)]
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k
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b31 = Ψj3,t − kψj2ψj1,t + kψj1ψj2,t + k2ψj1ψj1ψj1,t +
k2

2
ψ2
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9k2

2
(ψ2

j1ψj1,t),
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ω3 − ω3

[D2(ω1 + ω2 − ω3) + D3(ω1 + ω2 − ω3) + D4(2ω1 + ω1 − ω3)
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,

B1 = 1− tanh (k) tanh (3k), B2 = 1− tanh (3k) coth (2k),

B3 = 3− tanh (k) coth (2k)− tanh (k) tanh (3k)− tanh (3k) coth (2k),

B4 = 6k tanh (k)− 4k tanh (k) coth (2k) tanh (3k) + k tanh (3k) + ρk

−2k tanh 2(k) coth (2k),
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2
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tanh (3k)− 2k tanh (k) coth (2k) tanh (3k),
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1
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1
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G1 = tanh 2(k)− 2ρ+ 1, G2 = 1− tanh (k) coth (2k),

G3 = 2ρk − 3 tanh (k) + k2 tanh (k), G4 = −ρk + k2 tanh (k)− 2k tanh 2(k) coth (2k),

G5 = k tanh (k) + k2 tanh (k)− 2k tanh 2(k) coth (2k),

G6 = −ρk +
k2

2
, G7 = −4ρ+ 2 + tanh 2(k),

G8 = ik[2− 3 tanh (k) coth (2k)− tanh (k)− tanh 2(k)],

G9 = 4ik + 4ik3 tanh 2(k) coth (2k) + 2k2 tanh (k) coth (2k)− 2ik tanh (k) coth (2k),

G10 = − 1
2
ik2 tanh (k),

G11 = i[7k2 tanh (k)− 4k2 tanh 2(k) coth (2k)− 2 tanh (k) coth (2k) + k3 tanh (k)],
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G12 = −k
2

tanh (k), G13 =
ik2

2
tanh (k),

G14 = 4k3 tanh 2(k) coth (2k) + 2ik3 tanh (k)− 2k3 tanh (k) +
3k2

2We
,

G15 = k2 + k2 tanh 2(k) + 2k2 tanh (k) coth (2k).
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